Formation of oriented fishbone-like pores in biodegradable polymer scaffolds using directional phase-separation processing
نویسندگان
چکیده
منابع مشابه
Fabrication of Gelatin Scaffolds Using Thermally Induced Phase Separation Technique
Gelatin is considered as a partially degraded product of collagen and it is a biodegradable polymer which can be used to produce scaffolds for tissue engineering. Three-dimensional, porous gelatin scaffolds were fabricated by thermally induced phase separation and freeze-drying method. Their porous structure and pore size were characterized by scanning electron microscopy. Scaffolds with differ...
متن کاملMicrotubular architecture of biodegradable polymer scaffolds.
It is a relatively new approach to generate tissues with mammalian cells and scaffolds (temporary synthetic extracellular matrices). Many tissues, such as nerve, muscle, tendon, ligament, blood vessel, bone, and teeth, have tubular or fibrous bundle architectures and anisotropic properties. In this work, we have designed and fabricated highly porous scaffolds from biodegradable polymers with a ...
متن کاملControlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method.
Highly porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds were fabricated by a thermally-induced phase-separation (TIPS) method to deliver plasmid DNA in a controlled manner. A variety of TIPS parameters directly affecting pore structures and their interconnectivities of the scaffold, such as polymer concentration, solvent/non-solvent ratio, quenching methods and annealing time, were sys...
متن کاملPhase separation induced by ladder-like polymer-polymer complexation.
Polymer-polymer complexation in solvent is studied using an extension of the self-consistent field theory. The model polymers are capable of forming ladder-like duplex structures. The duplex formation occurs with an abrupt change of entropy, resulting in a first-order transition. Moreover, the complexation can be stabilized by solvent-polymer interactions, instead of the usual specific binding ...
متن کاملFabrication of Cell Patches Using Biodegradable Scaffolds with a Hexagonal Array of Interconnected Pores (SHAIPs).
Cell patches are widely used for healing injuries on the surfaces or interfaces of tissues such as those of epidermis and myocardium. Here we report a novel type of porous scaffolds made of poly(D,L-lactic-co-glycolic acid) for fabricating cell patches. The scaffolds have a single layer of spherical pores arranged in a unique hexagonal pattern and are therefore referred to as "scaffolds with a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2020
ISSN: 2045-2322
DOI: 10.1038/s41598-020-71581-y